Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection.

نویسنده

  • A G Matthysse
چکیده

During the attachment of Agrobacterium tumefaciens to carrot tissue culture cells, the bacteria synthesize cellulose fibrils. We examined the role of these cellulose fibrils in the attachment process by determining the properties of bacterial mutants unable to synthesize cellulose. Such cellulose-minus bacteria attached to the carrot cell surface, but, in contrast to the parent strain, with which larger clusters of bacteria were seen on the plant cell, cellulose-minus mutant bacteria were attached individually to the plant cell surface. The wild-type bacteria became surrounded by fibrils within 2 h after attachment. No fibrils were seen with the cellulose-minus mutants. Prolonged incubation of wild-type A. tumefaciens with carrot cells resulted in the formation of large aggregates of bacteria, bacterial fibrils, and carrot cells. No such aggregates were formed after the incubation of carrot cells with cellulose-minus A. tumefaciens. The absence of cellulose fibrils also caused an alteration in the kinetics of bacterial attachment to carrot cells. Cellulose synthesis was not required for bacterial virulence; the cellulose-minus mutants were all virulent. However, the ability of the parent bacterial strain to produce tumors was unaffected by washing the inoculation site with water, whereas the ability of the cellulose-minus mutants to form tumors was much reduced by washing the inoculation site with water. Thus, a major role of the cellulose fibrils synthesized by A. tumefaciens appears to be anchoring the bacteria to the host cells, thereby aiding the production of tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards understanding the role of membrane-bound endo-beta-1,4-glucanases in cellulose biosynthesis.

Recent studies have highlighted the involvement of membrane-anchored endo-beta-1,4-glucanases in cellulose biosynthesis in plants, suggesting that there are parallels with Agrobacterium tumefaciens and other bacteria which also require endo-beta-1,4-glucanases for cellulose synthesis. This review summarises recent literature on endo-beta-1,4-glucanases and their role in plant development and ad...

متن کامل

Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens.

We investigated the effects of salicylic acid (SA) and systemic acquired resistance (SAR) on crown gall disease caused by Agrobacterium tumefaciens. Nicotiana benthamiana plants treated with SA showed decreased susceptibility to Agrobacterium infection. Exogenous application of SA to Agrobacterium cultures decreased its growth, virulence, and attachment to plant cells. Using Agrobacterium whole...

متن کامل

Agrobacterium tumefaciens mutants affected in attachment to plant cells.

An analysis of Agrobacterium tumefaciens mutants with Tn5 insertions in chromosomal DNA showed that the chromosome of A. tumefaciens codes for a specific ability of this bacterium to attach to plant cells. This ability is associated with tumorigenesis by A. tumefaciens, the ability of avirulent A. tumefaciens to inhibit tumorigenesis, and the ability to adsorb certain phages. A second class of ...

متن کامل

Plasmid-dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells.

Kinetic, microscopic, and biochemical studies show that virulent Ti (tumor inducing)-plasmid-containing strains of Agrobacterium attach to normal tobacco and carrot tissue culture cells. Kinetic studies showed that virulent strains of A. tumefaciens attach to the plant tissue culture cells in increasing numbers during the first 1 to 2 h of incubation of the bacteria with the plant cells. Five T...

متن کامل

Role of bacterial lipopolysaccharide in attachment of agrobacterium to moss.

Gametophore induction in moss by Agrobacterium tumefaciens was inhibited by addition of lipopolysaccharide (LPS) from A. tumefaciens. The LPS did not affect bacterial viability or appear to bind to bacterial cells. LPS from nonbinding Agrobacterium radiobacter was not effective in reducing gametophore formation. A. tumefaciens LPS, if added 24 hours after addition of viable bacterial cells, had...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 154 2  شماره 

صفحات  -

تاریخ انتشار 1983